Image Restoration Algorithm Based on Artificial Fish Swarm Micro Decomposition of Unknown Priori Pixel

نویسندگان

  • Dan Sui
  • Fang He
چکیده

In this paper, we put forward a new method to holographic reconstruct image that prior information, module matching and edge structure information is unknown. The proposed image holographic restoration algorithm combines artificial fish swarm micro decomposition and brightness compensation. The traditional method uses subspace feature information of multidimensional search method, it is failed to achieve the fine structure information of image texture template matching and the effect is not well. Therefore, it is difficult to holographic reconstruct the unknown pixels. This weakness obstructs the application of image restoration to many fields. Therefore, we builds a structure texture conduction model for the priority determination of the block that to be repaired, then we use subspace feature information multidimensional search method to the confidence updates of unknown pixel. In order to maintain the continuity of damaged region in image, the artificial fish swarm algorithm decomposition model is combined with the image brightness compensation strategy of edge feature. The simulation result shows that it has a good visual effect in image restoration of a priori unknown pixel, recovery time and computation costs are less, the stability and convergence performance is improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

Image Restoration Using A PDE-Based Approach

 Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...

متن کامل

Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness

This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Local adaptivity to variable smoothness for exemplar-based image denoising and representation

A novel adaptive and exemplar-based approach is proposed for image restoration and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. The main idea is to associate with each pixel the weighted sum of data points within an adaptive neighborhood. This method is general and can be applied under the assumptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016